avangard-pressa.ru

Контрольная работа Парная регрессия 2


Контрольная работа
по теме: "Парная линейная регрессия"


Данные, характеризующие прибыль торговой компании "Все для себя" за первые 10 месяцев 2004 года (в тыс. руб.), даны в следующей таблице:

январь

февраль

март

апрель

май

июнь

июль

август

сентябрь

октябрь

367

418

412

470

485

470

525

568

538

558

В контрольной работе с использованием табличного процессора Ехсе
l
необходимо выполнить следующие вычисления и построения:
1. Построить диаграмму рассеяния.
2. Убедится в наличии тенденции (тренда) в заданных значениях прибыли фирмы и возможности принятия гипотезы о линейном тренде.
3. Построить линейную парную регрессию (регрессию вида ). Вычисление коэффициентов b
0
,
b
1
выполнить методом наименьших квадратов.
4. Нанести график регрессии на диаграмму рассеяния.
5. Вычислить значения статистики F и коэффициента детерминации R
2
.
Проверить гипотезу о значимости построенного уравнения регрессии.
6. Вычислить выборочный коэффициент корреляции и проверить гипотезу о ненулевом его значении.
7. Вычислить оценку дисперсии случайной составляющей эконометрической модели.
8. Проверить гипотезы о значимости вычисленных коэффициентов b
0
,
b
1
.

9. Построить доверительные интервалы для коэффициентов b
0
,
b
1
.

10. Построить доверительные интервалы для дисперсии случайной составляющей эконометрической модели.
11. Построить доверительную область для условного математического ожидания М()( по оси Х откладывать месяцы январь - декабрь). Нанести границы этой области на диаграмму рассеяния.
12. С помощью линейной парной регрессии сделать прогноз величины прибыли на ноябрь и декабрь месяц и нанести эти значения на диаграмму рассеяния. Сопоставить эти значения с границами доверительной области для условного математического ожидания М() и сделать вывод о точности прогнозирования с помощью построенной регрессионной модели.
Решение.
Используя исходные данные, строим диаграмму рассеяния:
На основе анализа диаграммы рассеяния убеждаемся в наличии тенденции увеличения прибыли фирмы и выдвигаем гипотезу о линейном тренде.
Полагаем, что связь между факторами Х и У может быть описана линейной функцией . Решение задачи нахождения коэффициентов b
0
,
b
1
основывается на применении метода наименьших квадратов и сводится к решению системы двух линейных уравнений с двумя неизвестными b
0
,
b
1
:
b
0
n + b
1
Уxi = Уyi,
b
0
Уxi + b
1
Уxi2 = Уxiyi.


Составляем вспомогательную таблицу:



х

y

x2

ху

y2

1

1

367

1

367

134689

2

2

418

4

836

174724

3

3

412

9

1236

169744

4

4

470

16

1880

220900

5

5

485

25

2425

235225

6

6

470

36

2820

220900

7

7

525

49

3675

275625

8

8

568

64

4544

322624

9

9

538

81

4842

289444

10

10

558

100

5580

311364

сумма

55

4811

385

28205

2355239

Для нашей задачи система имеет вид:
Решение этой системы можно получить по правилу Крамера:
Получаем:
, .
Таким образом, искомое уравнение регрессии имеет вид:
y =364,8 + 21,145x.


4. Нанесем график регрессии на диаграмму рассеяния.
5. Вычислим значения статистики F и коэффициента детерминации R
2
.
Коэффициент детерминации рассчитаем по формуле R2 = rxy2 = 0,9522 = 0,907. Проверим адекватность модели (уравнения регрессии) в целом с помощью F-критерия. Рассчитаем значение статистики F через коэффициент детерминации R2 по формуле:
Получаем: . Зададим уровень значимости б =0,01, по таблице находим квантиль распределения Фишера F0,01;1;8 = 11,26, где 1 – число степеней свободы.
Fфакт. > F0,01;1;8, т.к. 78,098 > 11,26.
Следовательно, делаем вывод о значимости уравнения регрессии при 99% - м уровне значимости.
6. Вычислим выборочный коэффициент корреляции и проверим гипотезу о ненулевом его значении.
Рассчитаем выборочный коэффициент корреляции по формуле:


Получаем:

Проверка существенности отличия коэффициента корреляции от нуля проводится по схеме: если , то гипотеза о существенном отличии коэффициента корреляции от нуля принимается, в противном случае отвергается.
Здесь t1-б/2,n-2 – квантиль распределения Стьюдента, б - уровень значимости или уровень доверия, n – число наблюдений, (n-2) – число степеней свободы. Значение б задается. Примем б = 0,05, тогда t1-б/2,n-2 = t0,975,8 = 2,37. Получаем:
.
Следовательно, коэффициент корреляции существенно отличается от нуля и существует сильная линейная связь между х и у.
С использованием табличного процессора Ехсеl проведем регрессионную статистику:
Вывод итогов:

Регрессионная статистика

Множественный R

0,952409

R-квадрат

0,907083

Нормированный R-квадрат

0,895468

Стандартная ошибка

21,7332

Наблюдения

10



Дисперсионный анализ




 

df

SS

MS

F

Значимость F

Регрессия

1

36888,245

36888,25

78,09816

2,119E-05

Остаток

8

3778,6545

472,3318



Итого

9

40666,9

 

 

 


 

Коэфф.

Станд. ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Y-пересечение

364,8

14,846599

24,57128

8,04E-09

330,56368

399,0363

Переменная X 1

21,14545

2,3927462

8,837316

2,12E-05

15,627772

26,66314

Вычисленные значения коэффициентов b
0
,
b
1
,
значения статистики F
,
коэффициента детерминации R
2
выборочного коэффициента корреляции rxy совпадают с выделенными в таблице.
7. Оценка дисперсии случайной составляющей эконометрической модели вычисляется по формуле .
Используя результаты регрессионной статистики, получаем:
.
8. Проверим значимость вычисленных коэффициентов b
0
,
b
1
по t-критерию Стьюдента. Для этого проверяем выполнение неравенств:
 и ,
где
, .
Используем результаты регрессионной статистики:




Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Y-пересечение

364,8

14,846599

24,57128

8,04E-09

330,56368

399,0363

Переменная X 1

21,14545

2,3927462

8,837316

2,12E-05

15,627772

26,66314

Получаем: ;  Примем б = 0,05, тогда t1-б/2,n-2 = t0,975,8 = 2,37.
Так как и , делаем вывод о значимости коэффициентов линейного уравнения регрессии.
9. Доверительные интервалы для коэффициентов b
0
,
b
1
получаем с помощью результатов регрессионной статистики.
Доверительный интервал для коэффициента b
0
уравнения регрессии:
Доверительный интервал для коэффициента b
1
уравнения регрессии:
10. Построим доверительный интервал для дисперсии случайной составляющей эконометрической модели по формуле:
.
Примем б = 0,05, тогда по таблице для 10-элементной выборки q = 0,65.
Получаем:


,
.
11. Построим доверительную область для условного математического ожидания М().
Доверительные интервалы для уравнения линейной регрессии:  находятся по формуле:
где  соответственно верхняя и нижняя границы доверительного интервала; значение независимой переменной  для которого определяется доверительный интервал, квантиль распределения Стьюдента, доверительная вероятность, (n-2) – число степеней свободы;
 
Рассмотрим уравнение: y =364,8 + 21,145x. Пусть  тогда . Зная  и , заполним таблицу:







1

385,95

20,25

4,634

377,327

394,564

2

407,09

12,25

5,215

397,391

416,791

3

428,24

6,25

5,738

417,564

438,908

4

449,38

2,25

6,217

437,819

460,945

5

470,53

0,25

6,661

458,138

482,917

6

491,67

0,25

7,078

478,508

504,838

7

512,82

2,25

7,471

498,921

526,715

8

533,96

6,25

7,845

519,372

548,556

9

555,11

12,25

8,202

539,854

570,365

10

576,25

20,25

8,544

560,363

592,146

сумма

82,5




11

597,4

30,25

8,873

580,897

613,903

12

618,55

42,25

9,190

601,453

635,638

График уравнения регрессии, доверительная полоса, диаграмма рассеяния:
12. С помощью линейной парной регрессии сделаем прогноз величины прибыли на ноябрь и декабрь месяц:
597,4, 618,55.
Нанесем эти значения на диаграмму рассеяния.


Эти значения сопоставимы с границами доверительной области для условного математического ожидания М().
Точность прогнозирования: с вероятностью 0,95 прибыль в ноябре находится в интервале (487,292; 515,508); прибыль в декабре находится в интервале (497,152; 526,376).